

Respiratory Distress Syndrome (RDS) and Using CPAP

KEMRI Wellcome Trust

Objectives

- Define Respiratory Distress Syndrome (RDS) and its clinical course
- Briefly outline lung growth and development
- Discuss the prevention of RDS
- Outline the specific management of RDS using CPAP
- Illustrate the complications of CPAP and their prevention
- List strategies to improve CPAP success rates

Definition of Respiratory Distress Syndrome (RDS)

Disease caused by

absence/inadequate

production of pulmonary

surfactant & related lung

underdevelopment

The disease is found mainly in preterm newborns (before 37 weeks' gestation)

Characterized by a **progressive increase in respiratory effort** and a decrease in the amount of air entering the lungs favoring hypoxia.

Sweet LR, Keech C, Klein NP, et al. Respiratory distress in the neonate: Case definition & guidelines for data collection, analysis, and presentation of maternal immunization safety data. Vaccine. 2017;35(48 doi:10.1016/j.vaccine.2017.01.046; Bahadue FL, Soll R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2012;11(11):CD001456 Nov 14. doi:10.1002/14651858.CD001456.pub2

RDS increases with decreasing gestational age

• The risk of RDS is inversely proportional to gestational age; occurs in approximately:

- RDS is seen soon after birth, worsens during the first few hours of life
- In contrast to Transient Tachypnea of the Newborn (TTN), worse at birth but improves within hours of birth

How is diagnosis of RDS made?

Kamath BD, Macguire ER, McClure EM, Goldenberg RL, Jobe AH. Neonatal mortality from respiratory distress syndrome: lessons for low-resource countries. Pediatrics. 2011;127(6):1139-1146. doi:10.1542/peds.2010-3212

Clinical Course of RDS

Periods of Treatment for RDS

RDS was first described by Hochheim 14 in **1903**, who noted unusual membranes in the lungs of 2 infants who died shortly after birth

Period 1 - Before 1950s: No widely used treatment

Period 2 – 1950 – 1969: Oxygen therapy was the specific intervention

Period 3 – 1970 – 1989: CPAP therapy was the specific intervention. Later on use of mechanical ventilation was attempted

Period 4 – After 1990: Antenatal corticosteroids, surfactant, advanced care technologies e.g. ECMO, high frequency oscillation

Increased % in RDS survivors with introduction of specific treatments

Beena D. Kamath, Emily-R. MacGuire, Elizabeth-M. McClure, Robert L. Goldenberg and Alan H. Jobe, Neonatal Mortality From Respiratory Distress Syndrome: Lessons for Low-Resource Countries, Pediatrics 40102014

Lung Growth and Development

Lung growth and Development

saving children's lives

Schittny, Johannes C. "Development of the lung." Cell and tissue research vol. 367,3 (2017)

Lung growth and development

Transition to extrauterine life

Cortisol

- ✓ Levels increase at **30 36 wks**, **prior** to term labor & peak **at labour**
- ✓ Regulates thyroid hormones and catecholamine release

Fetal lungs Birth Neonatal lungs Alveolar duct Fetal lung fluid Fetal lung fluid ✓ Fetal fluid secreted into lungs ✓ Fluid replaced by air (labour &

- ✓ Promotes development
- Maintains distension
- $Pressure = 2 4cmH_20$
- \checkmark Mechanical stretch stimulates surfactant production

- delivery, first breath and cry)
- ✓ Reduced secretion; increased absorption (regulated by hormones)
- ✓ Surfactant coats alveoli

Surfactant

- A complex mixture of phospholipids and proteins
- Reduces surface tension at the air-liquid interface of the alveoli
- Prevents collapse of alveoli during end exhalation
- Secretion is stimulated by hormones such as thyroxine and glucocorticoids
- Mechanical stretch (distension and hyperventilation can stimulate secretion from Alveolar type II cells

Surfactant production can be hindered by inflammation, genetic defects, infection

Lung growth and development

What can go wrong during transition? Premature

Caesarian section – no benefit from mechanical force of labour

no benefit from catecholamine surge

delivery – insufficient surfactant

> Premature delivery – lung absorptive capacity not optimum

Caesarian section –

Cold stress inactivates surfactant

Meconium aspiration inactivates surfactant

Prevention of RDS

Prevention of RDS

Antenatal steroids and the fetal lung

Administration of antenatal corticosteroids (ACS)

How is lung maturation induced?

Enhance
Surfactant
ProductionAntioxidant
Enzyme
ProductionStimulates
lung fluid
absorptionEnhance
alveolar
development

Glucocorticoids and Lung Development in the Fetus and Preterm Infant R J Bolt, M M van Weissenbruch, H N Lafeber, H A Delemarre-van de Waal 2001 Antenatal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth Devender Roberts, Julie Brown, Nancy Medley-, Stuart R Datziel, 2015

Prevention of RDS

Administration of ACS

- Betamethasone
 12 mg IM every
 - 24 hours for 2

doses

Total dose
 (24mg)

24 - 34 weeks gestation ²

- Dexamethasone
 6mg IM 12 hours
 apart for 4 doses
- Total dose

(24mg)

• 1-7 days before anticipated delivery- Betamethasone vs dexamethasone - none superior over the other.

WHO recommendations on use of ACS

- Administer within 1-7 days before imminent preterm birth (24 - 34 weeks)
- Use IM Dexamethasome or beclomethasone (total 24mg)
- Use for both single and multiple gestation pregnancies
- Recommended for women with PROM and no signs of infection, hypertensive disorders, at risk of delivering IUGR baby, Maternal DM
- A single repeat course of ACS recommended if preterm birth does not occur within 7 days after the initial dose and the risk of preterm birth is still there
- Not recommended for those with chorioamnionitis and those undergoing c/s for late preterms.

Benefits of ACS

Respiratory distress syndrome RR- (0.66, 95% CI- (0.56-0.77))

Intraventricular hemorrhage (RR- 0.69, 95% CI-(0.59-0.81))

Necrotizing enterocolitis (RR-0.50, 95% CI-(0.32-078))

Neonatal sepsis (RR-0.60, 95% CI- (0.41-0.88))

Mechanical ventilation (RR-0.68, 95% CI-(0.56-0.84))

Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth (Review) Roberts D, Brown J, Medley N, Dalziel SR 2017

Management of RDS

Approach to management

Keep warm and Maintain neutral thermal environment - Reduce oxygen consumption

Airway patency should be ensured

Breathing - Specific management; Surfactant use and Respiratory Support (CPAP)

Circulation- feeds and fluids; Initiation of early feeds & Maintenance fluids

D - Close monitoring of vitals; Blood sugars, Hypotension common in early RDS, Antibiotics, Caffeine

Specific Management

Continuous Positive Airway Pressure (CPAP)

Non invasive method of **oxygen** delivery

Provides **continuous distending pressure** that's keeps alveoli open during expiration

Reduces work of breathing therefore improves oxygenation

Decreases atelectasis and respiratory fatigue

Why use CPAP?

In-utero

 Fetal lungs in utero remain distended due to the pressure of 3-4 cm/H₂0 maintained by the fluid in the fetal lungs

- CPAP mimics normal physiology.
- Constant distending pressure at 2-3cm/H₂0.

Nasal Continuous Positive Airway Pressure (CPAP) for the Respiratory Care of the Newborn Infant Robert M DiBlasi RRT-NPS 2009 Image borrowed from https://consultqd.clevelandclinic.org/bubble-cpap-for-prevention-of-chronic-lung-disease-in-premature-infants/

Benefits of using CPAP

- 1. Improves oxygenation
- 2. Continuous distending pressure keeps alveoli open which maintains FRC
- 3. Promotes Lung growth and development.
- 4. Promote surfactant production

Prophylactic versus Rescue CPAP

Prophylactic CPAP

After 10 mins

Rescue CPAP

- 28 30 weeks (1-1.3kgs)
- Initiated as soon as possible within the delivery room
- For the newly born with good cardiac activity and breathing spontaneously
- Not in respiratory distress
- Intended to avoid mechanical ventilation

- Above 30 weeks (>1.3kgs)
- Initiated after trial of oxygen therapy
- Neonate with increased work of breathing and SpO₂< 90% on property prongs at 1L/min

Nasal Continuous Positive Airway Pressure (CPAP) for the Respiratory Care of the Newborn Infant Robert M DiBlasi RRT-NPS 2009

Management of RDS

How CPAP delivers varying Fraction of Inspired Oxygen (FIO₂)

Oxygen sources provide > 90%

Oxygen

Ambient air provides 21% oxygen

Blend ambient air with the oxygen from the source

- Varying FiO₂ delivered to the baby depending on the oxygen saturations.
- Pulse oximetry is important
- Titrate to achieve targets of SPO₂ 90-95%

- Titrate the flow rate from the oxygen source by increasing or decreasing 1L/min to achieve varying levels of FiO₂ (30-100%)
 Need for a ***blender

bCPAP Initiation Criteria

Adapted from the TRY algorithm

Implemented: Kenya, Tanzania, Uganda, Zimbabwe, Nigeria, USA, Belgium, Italy, Poland, Ukraine, Vietnam, Nepal, India, Bangladesh,and Brazil (16) Coming soon: Colombia, Ghana, Haiti (3) 3,000+ babies treated

VAYU bCPAP

Accessibility matters. The Vayu bCPAP system...

- Does not require electricity or compressed air (only pressurized oxygen)
- Costs a fraction of the price of previous
 CPAP systems

Quality of care matters. The Vayu bCPAP system...

- Pressurizes, humidifies, filters and blends oxygen
- Low work of breathing
- Received Emergency Use Authorization (EUA) by the US FDA and approved by Kenya's PPB and Tanzania's TMDA

Device Walkthrough

No electricity? Compressed Air? Why? Venturi Effect...

- High speed jet of pure oxygen crosses nozzle
- Pulls in ambient air $(21\% O_2)$ due to a pressure differential in chapter
- Provider able to deliver oxygen at an adjustable concentration $(30\% \rightarrow 100\%)$

Device Assembly

Fill with sterile water.

Fill with clean water + 2 tablespoons of acetic acid/vinegar if available.

Reusable Filter

Patient Application

INDEX	DESCRIPTION	QTY
13	Hat	1
14	Safety Pin	2
15	Rubber Band	2
16	Hook Moustache	1
17	Soft Loop Fastener	2

Monitoring the Device

Replace every 24 hours or when discolored

Refill regularly (8-12h) Replace contents every 24 hours Refill regularly Replace contents every 24 hours

Regularly check for bubbling in the pressure generator

In bubble CPAP, no bubbles mean no CPAP

Reusable Components

Adapted from the TRY algorithm

Disposable Components

Disposable Components

Filter Disk

Velcro Moustache

Soft Velcro

Replace every 24 hours

after every patient

after every patient

Reprocessing Instructions

- Discard moustache, filter disc and soft loop fasteners
- Launder hats
- Disassemble
- Manually clean each component with enzymatic detergent or scrub with soap
- Dry
- High level chemical disinfection with gluteraldehyde solution or chlorine solution
- Dry
- Store

For more details refer to Vayu bCPAP Reprocessing Instructions

Using Oxygen Concentrators

Oxygen Blender System

• Precisely blends air and oxygen to an

adjustable concentration

- Delivers 0.5- 4 LPM of flow
- Includes multiple nasal prong sizes for

patients up to 5 years old

Is approved by Kenya's PPB and Tanzania's

TMDA

Increasing bCPAP Treatment

Before increasing bCPAP Treatment;

- Is the water bubbling?
- Is the connection circuit complete and well secured?
- Does the baby need suctioning?

When increasing bCPAP Treatment

Base need to increase bCPAP on SPO₂ and work of breathing

After changing bCPAP Treatment

• Reassess the baby's immediate response and then at 15 min, 1 hour then 3-4hourly

Weaning & Stopping bCPAP

<u>Criteria for weaning CPAP Treatment</u>

- 1. Baby has been on CPAP for at least 24hours
- 2. RR less than 60/min for at least 6 hours
- 3. Oxygen saturation consistently greater than 90% for at least 6 hours
- 4. No significant grunting, indrawing, nasal flaring, apnoea or bradycardia for at least 6 hours

Decrease pressure by moving the wand up

Monitoring babies on bCPAP

Monitoring

- Vital signs
- Work of breathing
- Nasal blockage
- Abdominal distension

Attachment

- Position of the prongs
- Nasal septum intact
- Tubing not kinked
- Hat snuggly fit

Patient

Functioning

- Correct water level
- There is bubbling
- Humidifier is filled
- Correct blender setting

Monitoring on CPAP

Monitoring the Baby

[HOSPITAL NAME]

COMPREHENSIVE NEWBORN MONITORING CHART

Version 2.7

Name			IP NO				Sex M				D.O.A				D.O.B			
Date today			Diagnosis															
Birth Wt	gm		Interventi	ons:	CPAP 🗆	Oxygen 🗆	Photo	therapy	′⊡ B	lood tra	Infusion		kchange	e transfi	usion 🗆	КМ	С 🗆	
Daily Clinician	Feed and Flui	id prescri	ption	м	onitoring Freq	hrs Time												
Day of Life	Current Wt	t =	gm		Temp (^o C)													
Total input(feed and	fluid) 24hrs	=	ml	als	Pulse (b/min)													
Feed: BF 🗆 EBM 🗆 1	Ferm Formula	Pre-Terr	m Formula (Κ	Resp Rate (b/	min)												
Route: Cup□ NGT□	OGT□				Oxy Sat (%) o	r Cy⁰ Cy⁺												
Volume & Frequency	=m	nl 3hrly ⊑	〕2hrly □		Resp Distress	0,+,+++												
Total 24hr Volume	=m	ป			CPAP Pressure	e (cm H ₂ O)												
IV Fluid & Additives	Vol (ml)	Dur	ation	Ĕ	FiO₂ (%)													
			_	ssn	Jaundice 0,+,+	+++				1								
				Asse	Apnoea Y/N													
					Blood Sugar (mmol/l)												
					Completed by	(name)												
Other prescribing instr	uctions				Breastfeeding	sufficient Y/N												
				eed	EBM vol giver	ı (ml)												
					Formula vol g	iven (ml)												
				id	IV volume giv	en (ml)												
Clinician's name		Time:		문	IV Line worki	ng Y/N												
Daily IV	/ Fluid Nursir	ng plan		s	Vomit Y/N													
Start time:				utp	Urine Y/N													
Hourly rate=	_ml (drop	s/min)	0	Stool Y/N													
Planned vol =	_ml i	in	hrs		Completed by	(name)												
Morning shift notes				-	-						Total	feed+flu	id in this	shift	ml	Cor	mpleted b	y (name)
Category: AD BD CD													D	oficit	ml			
														encit				
Afternoon shift notes Category: A B B C											Total	feed+flu	id in this	shift	m	Cor	npleted b	y (name)
													D	eficit	ml			
Night shift notes											Total	food_flu	id in this	shift		Cor	nnleted b	v (name)
Category: A B C											To	tal food	fluid in 1	Mhrc	ml	00	inpreceu b	, (name)
											10	tar reeur		oficit	III 			
													U	enut	<u> </u>			

Alerts : circle readings outside normal range with red pen and action

Available Guidelines

3.) Use of Bubble Continuous Positive Airway Pressure (bCPAP)

Indications for bCPAP

- Preterm babies gestation age 28 30 weeks (prophylactic)
- Respiratory distress syndrome
 Respiratory distress (respiratory rate above 60/min, nasal flaring, grunting,
- sternal retractions and severe lower chest wall in-drawing)
 An oxygen saturations of less than 90% after ensuring a clear airway and
- proper positioning on oxygen 1L/min
- Babies above 30 weeks (Rescue) See supporting respiratory efforts protocols.

Family Centered Care

Inform the mother (parents) that their baby needs CPAP to be able to breathe better.

- Explain what the procedure involves in layman terms the connections to the
- machine, other tubings like the oral gastric tube (OGT), nasal prongs etc. • Explain that the procedure is safe and CPAP has been shown to improve

newborn outcomes.

Answer any questions/concerns they may have

• Ensure the baby is on oxygen via nasal prongs 1L/min as you explain all this to the parents

Items required to initiate bCPAP

Checklist for Machine Preparation	Check List for Baby preparation						
bCPAP machine	Hat or gauze roll						
Power cable	Hat clips						
Patient (Inspiratory) tubing	Orogastric (OG) tube						
Bottle (Expiratory) tubing	Normal saline in a 2ml Syringe						
CPAP Bottle with a lid	Clear adhesive Tape						
CPAP assorted sizes nasal prongs	Suction catheter size 6 and 8						
Elbow connectors	 Assorted nasal prongs (00 – 5) 						
Oxygen tubing	Blue litmus paper						
Oxygen source	5cc syringe						
Distilled water (at least 500mls)	Stethoscope						
• Trolley	Alcohol based hand rub						
• 50cc syringe	Suction machine						
 Nasal prongs measuring tape 	Pulse oximeter						

Complications of CPAP

Skin Complications

 Constant pressure on nares, ears, head and forehead can lead to reduced skin integrity and injury causing pressure ulcers.

First sign of skin breakdown is nasal erythema.

Prevention

- Frequent observation
- Minimize points of contact
- Keep skin dry and clean
- Avoid tight fitting hat over forehead, ears and bony prominences

Complications of CPAP

Nasal Complications

Nasal septal injury

Nasal flaring

Nasal snubbing

С

Prevention

- a) Maintain 2mm distance between columella and nasal prongs
- b) The prongs should fill the entire nare without blanching the external nare
- c) Ensure appropriate size of the nasal prongs and positioning of the whole interface

Complications of CPAP

Lung Complications

Pneumothorax CPAP increases risk of

air leaks.

Prevention

a) Always check CPAP
pressure

b) Do not exceed
pressures of 8cm
H₂0.
c) Check for any air
leaks in circuit

PRIYADARSHI, A., HINDER, M., BADAWI, N., LUIG, M., TRACY, M.: Continuous Positive Airway Pressure Belly Syndrome: Challenges of a Changing Paradigm. International Journal of Clinical Pediatrics, North America, 9, Feb. 2020, Queensland Clinical Guidelines. Resepiratory distress and CPAP Guideline No. MNZ0.3-V7-R25. Queensland Health. 2020. Abdominal distension Image borrowed from https://ep.bmi.com/content/102/3/166

Lung Complications

Hyperinflation of lungs

- Occurs due to high CPAP pressures.
- Results in reduced cardiac output secondary to reduced venous return.

Prevention
a) Always check CPAP
pressure
b) Do not exceed
pressures of 8cm
H₂0.

Complications of CPAP

Abdominal Complications

Abdominal distention

- Excessive swallowed air
- Feeding intolerance and desaturation episodes.

Prevention
a) Insert an OGT
b) Leave OGT open
c) If OGT is used for feeding, close for
30mins after feeding the baby then open OGT

PRIYADARSHI, A., HINDER, M., BADAWI, N., LUIG, M., TRACY, M.. Continuous Positive Airway Pressure Belly Syndrome: Challenges of a Changing Paradigm. International Journal of Clinical Pediatrics, North America, 9, Feb. 2020, Queensland Clinical Guidelines. Resepiratory distress and CPAP Guideline No. MN20.3-V7-R25. Queensland Health. 2020. Abdominal distension Image borrowed from https://dis Hypoxia

SPO₂ - 85 - 89%

Hyperoxia

SPO₂ - > 95%

Oxygen Therapy Complications

- Does not alter rates of developing;
 - a) Chronic lung disease- BPD
 - b) Blindness
 - c) Neurodevelopmental impairment.
- Free radicals that cannot be metabolized by immature antioxidant systems.
- Chronic lung disease BPD
- Eye Injury RoP

Prevention
a) Monitor SpO₂
b) Aim for O₂ saturation of 90-95%
c) Titrate the FiO₂ based on SpO₂

Walsh BK, Smallwood CD. Pediatric Oxygen Therapy: A Review and Update. Respir Care. 2017;62(6):645-661. doi:10.4187/respcare.05245

CPAP Failure

CPAP leads to a 35% reduction in death and use of assisted ventilation¹.

It however can fail A diagnosis of CPAP failure is made on any baby who has been on correctly applied CPAP and continues to have:

- 1. Moderate to severe recessions and grunting
- FiO2 greater than 40% to maintain target SpO2 with 7 cmH2O CPAP
- Rapid increase of oxygen requirement including a rise of 10% over 2 hours or less
- 4. Respiratory acidosis
- 5. Recurrent apnoeic episodes.
- 6. Development of pneumothorax
- 7. Baby agitated and not settled by comfort

measures

Risk factors for CPAP failure

Newborn Characteristics

- Weight
 <1000g
- Gestation
 <28 weeks
- Sex Male

Maternal Factors

- Poor antenatal steroid
 - coverage
- PPROM

Severity of the Disease

- Moderate or Severe RDS
- Delayed onset of treatment

Implementing CPAP

Increasing CPAP success rates

- Policy Change Required
- Improved ANC care to ensure antenatal steroid coverage in management of preterm labor.
- The NBU care of patients on CPAP is one level below NICU, this means staffing is key as poor supervision increases mortality.
- **3. Nursing care takes priority** proper application of CPAP interface, monitoring, providing supportive care and above all a gentle and human care.

Questions

Summary

- CPAP promotes lung growth/development and protects lung – all babies deserves the best care.
- 2. CPAP should be initiated at an FiO_2 of 50%, which then is titrated upwards or downwards to achieve oxygen saturation targets of 90-95%
- 3. Regularly monitor patient to optimize CPAP benefits and reduce risk of complications

